Exemplar Problem

Conic Section

40. The locus of the point of intersection of lines $\sqrt{3}x - y - 4\sqrt{3}k = 0$ and $\sqrt{3}kx + ky - 4\sqrt{3} = 0$ for different value of k is a hyperbola whose eccentricity is 2.

Ans:

Given The locus of the point of intersection of lines $\sqrt{3}x - y - 4\sqrt{3}k = 0$ and $\sqrt{3}kx + ky - 4\sqrt{3} = 0$ for different value of k is a hyperbola whose eccentricity is 2.

From the line $\sqrt{3}x - y - 4\sqrt{3}k = 0$, $k = \frac{\sqrt{3}x - y}{4\sqrt{3}}$.

And from the line $\sqrt{3}kx + ky - 4\sqrt{3} = 0$, $k = \frac{4\sqrt{3}}{\sqrt{3}x + y}$.

Equate the values of k.

$$\Rightarrow \frac{\sqrt{3}x - y}{4\sqrt{3}} = \frac{4\sqrt{3}}{\sqrt{3}x + y}$$

 $\Rightarrow 3x^2 - y^2 = 48$

 $\Rightarrow \frac{x^2}{16} - \frac{y^2}{48} = 1$ which is an equation of a hyperbola.

 $\Rightarrow a^2 = 16$ and $b^2 = 48$

 $\Rightarrow e^2 = 1 + \frac{48}{16}$

 $\Rightarrow e^2 = 1 + 3$

 $\Rightarrow e^2 = 4$

$$\Rightarrow e = 2$$

Hence, the given statement is true.